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1. Introduction

A nonperturbative understanding of QCD at nonzero baryon density remains one of the

outstanding problems in the theory of strong interactions. Besides the theoretical challenge,

there is a clear phenomenological interest in pursuing these studies, due to the ongoing

developments in heavy ion collision experiments, at RHIC, LHC and at the planned FAIR

facility at GSI.

The standard nonperturbative tool to study quarks and gluons, lattice QCD, cannot

be applied in a straightforward manner, because the complexity of the fermion determinant

prohibits the use of approaches based on importance sampling. This is commonly referred

to as the sign problem. Since the start of the millenium a number of new methods has been

devised. These include reweighting [1 – 4], Taylor series expansion in µ/T [5 – 8], imaginary

chemical potential and analytical continuation [9 – 12], and the use of the canonical ensem-

ble [13, 14] and the density of states [15]. Except for the last two, these approaches are
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approximate by construction and aimed at describing the QCD phase diagram in the region

of small chemical potential and temperatures around the crossover between the confined

and the deconfined phase. In this paper we discuss an approach which is manifestly in-

dependent of those listed above: stochastic quantization and complex Langevin dynamics.

How well this method will work is not known a priori. However, one of the findings of our

study is that excellent agreement is found in the case of simple models, where comparison

with results obtained differently is available. In particular we find that the range of appli-

cability is not restricted to small chemical potential and, importantly, does not depend on

the severity of the sign problem. The first results we present for lattice QCD at nonzero

density are encouraging, although a systematic analysis has not yet been performed.

This paper is organized as follows. In the following section we briefly describe the idea

behind stochastic quantization and the necessity to use complex Langevin dynamics in the

case of nonzero chemical potential. In sections 3 and 4 we apply this technique to U(1)

and SU(3) one link models. In both cases a comparison with exact results can be made.

We study the phase of the determinant in detail. In the case of the U(1) model, we employ

the possibility to analyse classical flow diagrams and the Fokker-Planck equation to gain

further understanding of the results. In section 5 we turn to QCD, using the full gauge

dynamics but treating the fermion determinant in the hopping expansion. Our findings

and outlook to the future are summarized in section 6. The appendix contains a brief

discussion of the Fokker-Planck equation in Minkowski time for the one link U(1) model.

2. Stochastic quantization and complex Langevin dynamics

The main idea of stochastic quantization [16, 17] is that expectation values are obtained

as equilibrium values of a stochastic process. To implement this, the system evolves in a

fictitious time direction θ, subject to stochastic noise, i.e. it evolves according to Langevin

dynamics. Consider for the moment a real scalar field φ(x) in d dimensions with a real

euclidean action S. The Langevin equation reads

∂φ(x, θ)

∂θ
= − δS[φ]

δφ(x, θ)
+ η(x, θ), (2.1)

where the noise satisfies

〈η(x, θ)〉 = 0, 〈η(x, θ)η(x′, θ′)〉 = 2δ(x − x′)δ(θ − θ′). (2.2)

By equating expectation values, defined as

〈O[φ(x, θ)]〉η =

∫

DφP [φ, θ]O[φ(x)], (2.3)

where O is an arbitrary operator and the brackets on the left-hand side denote a noise

average, it can be shown that the probability distribution P [φ, θ] satisfies the Fokker-Planck

equation
∂P (φ, θ)

∂θ
=

∫

ddx
δ

δφ(x, θ)

(

δ

δφ(x, θ)
+

δS[φ]

δφ(x, θ)

)

P [φ, θ]. (2.4)
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In the case of a real action S, the stationary solution of the Fokker-Planck equation, P [φ] ∼
exp (−S[φ]), will be reached in the large time limit θ → ∞, ensuring convergence of the

Langevin dynamics to the correct equilibrium distribution. When the action is complex, as

is the case in QCD at finite chemical potential, the situation is not so easy. It is still possible

to consider Langevin dynamics based on eq. (2.1) [18 – 21]. However, due to the complex

force on the right-hand side, fields will now be complex as well: φ → Re φ + iIm φ. As a

result, proofs of the convergence towards the (now complex) weight e−S are problematic.

In the past, complex Langevin dynamics has been applied to effective three-dimensional

spin models with complex actions, related to lattice QCD at finite µ in the limit of strong

coupling and large fermion mass [22 – 24] (for applications to other models, see e.g. ref. [25]).

Our work has also partly been inspired by the recent application of stochastic quantization

to solve nonequilibrium quantum field dynamics [26 – 28]. In that case the situation is

even more severe. Nevertheless, numerical convergence towards a solution can be obtained

under certain conditions, both for simple models and four-dimensional field theories. For

an illustration we present some original results in the appendix.

Here we consider models with a partition function whose form is motivated by or

derived from QCD at finite chemical potential. The QCD partition function reads

Z =

∫

DU e−SB detM, (2.5)

where SB(U) is the bosonic action depending on the gauge links U and det M is the complex

fermion determinant, satisfying

det M(µ) = [detM(−µ)]∗. (2.6)

Specifically, for Wilson fermions the fermion matrix has the schematic form

M = 1 − κ

3
∑

i=1

(

Γ+iUx,iTi + Γ−iU
†
x,iT−i

)

− κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
†
x,4T−4

)

. (2.7)

Here T are lattice translations, Γ±µ = 11 ± γµ, and κ is the hopping parameter. Chemical

potential is introduced by multiplying the temporal links in the forward (backward) direc-

tion with eµ (e−µ) [29]. We use eq. (2.7) as a guidance to construct the U(1) and SU(3)

one link models considered next.

3. One link U(1) model

3.1 Complex Langevin dynamics

We consider a one link model with one degree of freedom, written as U = eix. The partition

function is written suggestively as

Z =

∫

dU e−SB detM =

∫ π

−π

dx

2π
e−SB detM, (3.1)

where the “bosonic” part of the action reads

SB(x) = −β

2

(

U + U−1
)

= −β cos x, (3.2)
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while the “determinant” is constructed by multiplying the forward (backward) link with

eµ (e−µ),

det M = 1 +
1

2
κ

[

eµU + e−µU−1
]

= 1 + κ cos(x − iµ). (3.3)

Due to the chemical potential, the determinant is complex and has the same property as the

fermion determinant in QCD, i.e. detM(µ) = [det M(−µ)]∗. For an imaginary chemical

potential µ = iµI , the determinant is real, as is the case in QCD.

Observables are defined as

〈O(x)〉 =
1

Z

∫ π

−π

dx

2π
e−SB detM O(x). (3.4)

In this model most expectation values can be evaluated analytically. We consider here the

following observables:

• Polyakov loop:

〈U〉 = 〈eix〉 =
1

Z

[

I1(β) + κI ′1(β) cosh µ − κI1(β)/β sinhµ
]

, (3.5)

where the partition function equals

Z = I0(β) + κI1(β) cosh µ, (3.6)

and In(β) are the modified Bessel functions of the first kind.

• Conjugate Polyakov loop:

〈U−1〉 = 〈e−ix〉 = 〈eix〉
∣

∣

∣

∣

µ→−µ

. (3.7)

At finite chemical potential, 〈U〉 and 〈U−1〉 are both real, but different.

• Plaquette:

〈cos x〉 =
∂

∂β
ln Z =

1

Z

[

I1(β) + κI ′1(β) cosh µ
]

. (3.8)

Note that 〈cos x〉 = 1
2〈eix + e−ix〉.

• Density:

〈n〉 =
∂

∂µ
ln Z =

〈

iκ sin(x − iµ)

1 + κ cos(x − iµ)

〉

=
1

Z
κI1(β) sinh µ. (3.9)

At small chemical potential 〈n〉 increases linearly with µ, while at large chemical

potential 〈n〉 → 1 exponentially fast.

We now aim to estimate these observables using numerical techniques. Due to the com-

plexity of the determinant, they cannot be estimated using methods based on importance

sampling. Instead, we attempt to obtain expectation values using stochastic quantization.
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At nonzero chemical potential, the action is complex and it becomes necessary to

consider complex Langevin dynamics. We write therefore x → z = x + iy, and consider

the following complex Langevin equations

xn+1 = xn + ǫKx(xn, yn) +
√

ǫηn, (3.10)

yn+1 = yn + ǫKy(xn, yn). (3.11)

Here we have discretized Langevin time as θ = nǫ, and the noise satisfies

〈ηn〉 = 0, 〈ηnηn′〉 = 2δnn′ . (3.12)

The drift terms are given by

Kx = −Re
∂Seff

∂x

∣

∣

∣

∣

∣

x→x+iy

, Ky = −Im
∂Seff

∂x

∣

∣

∣

∣

∣

x→x+iy

, (3.13)

where the effective action reads

Seff = SB − ln detM = −β cos x − ln [1 + κ cos(x − iµ)] . (3.14)

Explicitly, the drift terms are

Kx = − sinx

[

β cosh y + κ
cosh(y − µ) + κ cos x

D(x)

]

, (3.15)

Ky = −β cos x sinh y − κ sinh(y − µ)
cos x + κ cosh(y − µ)

D(x)
, (3.16)

where

D(x) = [1 + κ cos x cosh(y − µ)]2 + [κ sin x sinh(y − µ)]2 . (3.17)

Occasionally we will also consider this model by expanding in small κ, the hopping expan-

sion, and take

Seff = −β cos x − κ cos(x − iµ) (hopping expansion). (3.18)

This limit is motivated by the model of Heavy Dense Matter used in ref. [36]. A direct

application of our method to QCD in the hopping expansion is presented in section 5.

In order to compute expectation values, also the observables have to be complexified.

For example, after complexification x → z = x + iy, the plaquette reads

cos x → cos(x + iy) = cos x cosh y − i sin x sinh y. (3.19)

All operators we consider are now complex, with the real (imaginary) part being even (odd)

under x → −x.

The Langevin dynamics can be solved numerically. In figure 1 the real parts of the

Polyakov loop and the conjugate Polyakov loop are shown as a function of µ for three

values of β at fixed κ = 1/2. In figure 2 (left) the density is shown. The lines are the

exact analytical results. The symbols are obtained with the stochastic quantization. We

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
0
1
8

0 2 4 6 8
µ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e 

<
 e

ix
 >

β=1
β=2
β=3

0 2 4 6 8
µ

0.5

1

1.5

2

2.5

R
e 

<
 e

-i
x  >

β=1
β=2
β=3

Figure 1: Real part of the Polyakov loop 〈eix〉 (left) and the conjugate Polyakov loop 〈e−ix〉 (right)

as a function of µ for three values of β at fixed κ = 1/2. The lines are the analytical results, the

symbols are obtained with complex Langevin dynamics.

observe excellent agreement between the analytical and numerical results. For the results

shown here and below, we have used Langevin stepsize ǫ = 5×10−5 and 5×107 time steps.

Errors are estimated with the jackknife procedure. The imaginary part of all observables

shown here is consistent with zero within the error in the Langevin dynamics.1 This can be

understood from the symmetries of the drift terms and the complexified operators, since

the drift terms behave under x → −x as

Kx(−x, y;µ) = −Kx(x, y;µ), Ky(−x, y;µ) = Ky(x, y;µ), (3.20)

while the imaginary parts are odd. Therefore, after averaging over the Langevin trajectory

the expectation value is expected to reach zero within the error, which is what we observe.

As an aside, we note that the symmetry of the drift terms under y → −y,

Kx(x,−y;−µ) = Kx(x, y;µ), Ky(x,−y;−µ) = −Ky(x, y;µ), (3.21)

relates positive and negative chemical potential.

At imaginary chemical potential µ = iµI the determinant is real, so that the complexi-

fication of the Langevin dynamics is not necessary. We demonstrate the smooth connection

for results obtained at imaginary µ using real Langevin dynamics and results obtained at

real µ using complex Langevin dynamics for the expectation value of the plaquette 〈cos x〉
in figure 2 (right). Since the plaquette is even under µ → −µ, we show the result as a

function of µ2, so that the left side of the plot corresponds to imaginary chemical poten-

tial, while the right side corresponds to real chemical potential. On both sides excellent

agreement with the analytical expression can be observed. We also note that the errors

are comparable on both sides.

3.2 Phase of the determinant

At finite chemical potential the determinant is complex and can be written as

detM = |det M |eiφ. (3.22)

1Analytically they are identically zero.
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Figure 2: Left: real part of the density 〈n〉. Right: real part of the plaquette 〈cosx〉 versus µ2.

Results at positive (negative) µ2 have been obtained with complex (real) Langevin evolution.

In order to assess the severity of the sign problem, we consider the phase of the determinant

and study the behaviour of eiφ. An observable often used for this purpose [38, 39] is

〈e2iφ〉 =

〈

detM(µ)

det M(µ)∗

〉

=

〈

det M(µ)

detM(−µ)

〉

, (3.23)

where we used eq. (2.6). At zero chemical potential the ratio equals one, while at large µ

one finds in this model that

lim
µ→∞

〈e2iφ〉 =
I3(β)

I1(β)
+ O(e−µ), (3.24)

for nonzero β. In expressing eq. (3.23) as the expectation value obtained from the complex

Langevin process, complex conjugation has to be performed after the complexification of

the variables, as discussed above. In that case detM(µ)∗ as a complex number is not the

complex conjugate of detM(µ). To avoid confusion we write detM(−µ) in all relevant

expressions. Notice that this implies that φ itself is also complex.

In figure 3 (left) we show the real part of this observable as a function of µ. The

imaginary part is again zero analytically and zero within the error in the Langevin process.

The lines are obtained by numerical integration of the observable with the complex weight,

while the symbols are again obtained from Langevin dynamics. We note again excellent

agreement between the semi-analytical and the stochastic results. In particular, there

seems to be no problem in accessing the region with larger µ where the average phase

factor becomes very small. The numerical error is under control in the entire range. We

find therefore that the sign problem does not appear to be a problem for this method in

this model.2

In contrast to what could be inferred from the result above, expectation values of eiφ

are not phase factors, due to the complexity of the action. This can be seen by considering

〈e−2iφ〉 =

〈

detM(−µ)

det M(µ)

〉

=
Z(−µ)

Z(µ)
= 1, (3.25)

2In QCD, the average phase factor is expected to go to zero exponentially fast in the thermodynamic

limit.
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Figure 3: Left: real part of 〈e2iφ〉 = 〈detM(µ)/ detM(−µ)〉. Right: real part of 〈e−2iφ〉 =

〈det M(−µ)/ detM(µ)〉 = Z(−µ)/Z(µ).

where the second and third equality follow from the cancelation of det M(µ) in the definition

of the expectation value and from Z being even in µ. We have also computed this observable

using Langevin dynamics and the result is shown in figure 3 (right). For the Langevin

parameters used here, we observe that the numerical estimate is consistent with 1, but with

quite large errors when µ increases at small values of β. We have found that increasing the

Langevin time reduces the uncertainty. We conclude that at large chemical potential this

ratio of determinants is the most sensitive and slowest converging observable we considered.

We observed above that the average phase factor becomes very small at large µ but

that this does not manifest itself in all but one observable we consider. Insight into this

feature can be gained by studying scatter plots of the phase factor during the Langevin

process. In figure 4 we show the behaviour of e2iφ during the Langevin evolution in the two-

dimensional plane spanned by Re e2iφ and Im e2iφ. At zero chemical potential, Re e2iφ = 1

and Im e2iφ = 0 during the entire evolution. For increasing µ one finds more and more

deviations from this, with an interesting structure at intermediate values of µ. Note that

the resulting distribution is approximately invariant under reflection in Im e2iφ → −Im e2iφ,

ensuring that the imaginary part of the expectation value 〈e2iφ〉 vanishes within the error.

Due to the wide distribution, the horizontal and vertical scales in the middle section of

figure 4 are much larger than in the top and bottom part. However, the average phase

factor remains well defined for all values of µ, as can be seen in figure 3. At large µ,

the average phase factor becomes very small. However, the distribution is very narrow,

see figure 4 (bottom). Therefore, although the average is close to zero, the error in the

Langevin dynamics is very well under control.

3.3 Fixed points and classical flow

The excellent results obtained above can partly be motivated by the structure of the dy-

namics in the classical limit, i.e. in absence of the noise. As we demonstrate below, the

classical flow and fixed point structure is easy to understand when µ = 0 and, most im-

portantly, does not change qualitatively in the presence of nonzero chemical potential.

– 8 –
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Figure 4: Scatter plot of e2iφ = detM(µ)/ detM(−µ) during the Langevin evolution for various

values of µ at β = 1, κ = 1/2. Note the different scale in the middle box.

Classical fixed points are determined by the extrema of the classical (effective) action,

i.e. by putting Kx = Ky = 0. We first consider the “bosonic” model and take κ = 0. The

– 9 –
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drift terms are3

Kx(x, y) = −β sinx cosh y, Ky(x, y) = −β cos x sinh y. (3.26)

We see that there is one stable fixed point at (x, y) = (0, 0) and one unstable fixed point at

(π, 0). Moreover, the classical flow equation, dz/dθ = −β sin z, can be solved analytically,

with the solution

tan
z(θ)

2
= e−β(θ−θ0) tan

z(0)

2
, (3.27)

where z(0) is the initial value at θ = θ0. We find therefore that the stable fixed point is

reached for all z(0), except when x(0) = π. On this line the solution reads

tanh
y(θ)

2
= eβ(θ−θ0) tanh

y(0)

2
, (3.28)

and the flow diverges to y → ±∞, except when starting precisely on the unstable fixed

point (π, 0). Note, however, that the noise in the x direction will kick the dynamics of the

unstable trajectories.

We now include the determinant, starting with the hopping expansion (3.18). Putting

Kx = Ky = 0 yields again one stable fixed point at (x, y) = (0, y∗) and one unstable fixed

point at (π, y∗), where

tanh y∗ =
κ sinh µ

β + κ cosh µ
. (3.29)

Note that in the strong coupling limit y∗ = µ. We find therefore a simple modification of

the bosonic model: in response to the chemical potential the two fixed points move in the

vertical y direction, but not in the x direction.

We continue with the full determinant included. Consider the case with µ = 0 first,

where real dynamics can be considered. Again we find the stable fixed point at x = 0 and

the unstable fixed point at x = π. Provided that

γ ≡
(

1

β
+

1

κ

)

> 1, (3.30)

there are no additional fixed points. In order to satisfy this condition, we take κ < 1

throughout. Using complex dynamics, while keeping µ = 0, we find that the stable fixed

point at (x, y) = (0, 0) remains, but that there are now three unstable fixed points at x = π,

given by (π, 0) and (π,±y∗), with cosh y∗ = γ. Interestingly, the fixed-point structure is

therefore different for real and complex flow.

Finally, we come to the full determinant at finite chemical potential. In this case

the fixed points can only be determined numerically. We find a stable fixed point at

(x, y) = (0, ys) and unstable fixed points at (x, y) = (π, yu). The y coordinates of these

fixed points are determined by

Ky

∣

∣

∣

x=0,π
= ∓β sinh y ∓ κ sinh(y − µ)

1 ± κ cosh(y − µ)
= 0, (3.31)

3For the bosonic model, there is of course no need to complexify the Langevin dynamics and one may

take y = 0. This yields the same fixed points.

– 10 –
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Figure 5: Classical flow diagram in the x − y plane for β = 1, κ = 1/2, µ = 0.1 (top) and µ = 1

(bottom). The big dots indicate the fixed points at x = 0 and π. The small circles indicate a

trajectory during the Langevin evolution, each dot separated from the previous one by 500 steps.

Note the periodicity x → x + 2π.

where the upper (lower) sign applies to ys (yu). At x = 0 there is only one solution, while

at x = π we find numerically that there are three (unstable) solutions for small chemical

potential, two for intermediate µ and only one for large µ. Although the number of fixed

points at x = π depends on µ, we find that they are always unstable such that this has no

effect on the dynamics, which is attracted to the stable fixed point at x = 0.

– 11 –



J
H
E
P
0
9
(
2
0
0
8
)
0
1
8

-2 -1 0 1 2 3 4 5

x

-2

0

2

4

y

µ=2

-2 -1 0 1 2 3 4 5

x

-2

0

2

4

6

y

µ=5

Figure 6: As in the previous figure, with µ = 2 (top) and µ = 5 (bottom).

In figures 5 and 6 we show the classical flow diagrams in the x−y plane. The direction of

the arrows indicates (Kx,Ky), evaluated at (x, y). The lengths of the arrows are normalized

for clarity. The fixed points are indicated with the larger black dots. In the bosonic model

(κ = 0), the analytical solution showed that the fixed point at x = 0 is globally attractive,

except when x = π. At nonzero κ and µ, the fixed point at x = 0 appears to be globally

attractive as well, except again for x = π. The small (blue) dots are part of a Langevin

trajectory, each dot separated from the previous one by 500 steps. For vanishing µ, the
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dynamics takes place in the x direction only; for increasing µ it spreads more and more

in the y direction. An interesting asymmetry around the classical fixed point in the y

direction can be observed. However, the dynamics remains well contained in the x − y

plane.

We conclude therefore that the complex Langevin dynamics does not change quali-

tatively in the presence of a chemical potential, small or large. We take this as a strong

indication that the method is insensitive to the sign problem.

3.4 Fokker-Planck equation

The microscopic dynamics of the Langevin equation,

∂x

∂θ
= −∂S

∂x
+ η, (3.32)

where θ is the (continuous) Langevin time, can be translated into the dynamics of a dis-

tribution P (x, θ), via the relation

〈O(x, θ)〉η =

∫

dx

2π
P (x, θ)O(x). (3.33)

From the Langevin equation, it follows that P (x, θ) satisfies a Fokker-Planck equation,

∂

∂θ
P (x, θ) = Lc

FPP (x, θ), (3.34)

where Lc
FP is the complex Fokker-Planck operator

Lc
FP =

∂

∂x

(

∂

∂x
+

∂S

∂x

)

. (3.35)

The stationary solution of the Fokker-Planck equation is easily found by putting Lc
FPP (x) =

0 and is given by Pst(x) ∼ exp[−S(x)]. In order to cast eq. (3.34) as an eigenvalue problem,

we write P (x, θ) = e−λθP (λ)(x). The solution of the Fokker-Planck equation can then be

written as

P (x, θ) =
e−S(x)

Z
+

∑

λ

e−λθP (λ)(x). (3.36)

It is therefore interesting to study the properties of the Fokker-Planck equation and the

nonzero eigenvalues λ.

In order to do so, we consider the model in the hopping expansion (3.18), with the

action

S = −β cos x − κ cos(x − iµ). (3.37)

Explicitly, the Fokker-Planck equation then reads

Ṗ (x, θ) = P ′′(x, θ) + [β sin x + κ sin(x − iµ)] P ′(x, θ)

+ [β cos x + κ cos(x − iµ)] P (x, θ), (3.38)
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Figure 7: Solution of the complex Fokker-Planck equation: Langevin time dependence of the

modes Pn(θ) for various values of n, with β = 1, κ = 1/2, and µ = 1 (left) and µ = 3 (right).

where primes/dots indicate x/θ derivatives. Using periodicity, P (x + 2π, θ) = P (x, θ), we

decompose

P (x, θ) =
∑

n∈Z

e−inxPn(θ), Pn(θ) =

∫ π

−π

dx

2π
einxP (x, θ), (3.39)

and we find

Ṗn(θ) = −n2Pn(θ) − nc+Pn+1(θ) + nc−Pn−1(θ), (3.40)

with

c± =
1

2

(

β + κe±µ
)

. (3.41)

We note that this equation is completely real, such that all Pn(θ)’s are real. This is expected

for the stationary solution, since from S∗(x) = S(−x) it follows that P ∗
st(x) = Pst(−x) and

therefore P ∗
n,st = Pn,st. The numerical solution of eq. (3.40) is shown in figure 7 for a

number of modes Pn(θ) for µ = 1 (left) and 3 (right). The initial values Pn(0) = 1 for

all n. The number of modes is truncated, with −50 < n < 50. For large ±n, Pn(θ) → 0

exponentially fast. The zero mode P0 is θ independent and equal to 1 by construction.

We have verified that the other modes converge to the values determined by the stationary

solution ∼ e−S .

The convergence properties can be understood from the eigenvalues of the Fokker-

Planck operator. Writing Pn(θ) = exp(−λθ)Pn gives the eigenvalue equation

n2Pn + nc+Pn+1 − nc−Pn−1 = λPn. (3.42)

Since all Pn are real, also all eigenvalues λ are real. Although at first sight this may seem

surprising, it is a consequence of the symmetry of the action and therefore it also holds in

e.g. the full model.

The case λ = 0 corresponds to the stationary solution. Here we consider λ 6= 0. First

take n = 0. It follows from eq. (3.42) that P0 = 0. As a result, the sequences for n > 0

– 14 –
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Figure 8: Left: four smallest nonzero eigenvalues of the complex Fokker-Planck equation as a

function of µ with β = 1, κ = 1/2. Right: smallest nonzero eigenvalue as a function of β for various

values of µ at κ = 1/2.

and n < 0 split in two. Written in matrix form, they read

















1 c± 0 0 . . .

−2c∓ 4 2c± 0 . . .

0 −3c∓ 9 3c± . . .

0 0 −4c∓ 16 . . .
...

...
...

...
. . .

































P±1

P±2

P±3

P±4
...

















= λ

















P±1

P±2

P±3

P±4
...

















(3.43)

Approximating this matrix by a large but finite matrix, one can easily compute the eigen-

values numerically. We find that they are all positive and that the n > 0, n < 0 sequences

yield identical eigenvalues. In figure 8 (left) the four smallest nonzero eigenvalues are shown

as a function of chemical potential. All eigenvalues are strictly positive and increase with

µ. In figure 8 (right) the dependence on β is indicated. At vanishing β, the µ dependence

cancels, since in that case c+c− = κ2/4. Also as a function of β we observe that the

eigenvalues are strictly positive.

If the action and therefore the Langevin dynamics would be real, these results would

be sufficient to explain the convergence of the observables towards the correct values as

observed above, by employing eq. (3.36) in the large θ limit. In the complex case we

consider here, this is not immediately clear. Given the real Langevin equations,

∂x

∂θ
= Kx + η,

∂y

∂θ
= Ky, (3.44)

one can also consider the real distribution ρ(x, y, θ), satisfying the Fokker-Planck equation

∂

∂θ
ρ(x, y, θ) = LFPρ(x, y, θ), (3.45)

with the real Fokker-Planck operator

LFP =
∂

∂x

(

∂

∂x
− Kx

)

− ∂

∂y
Ky. (3.46)
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After complexification, expectation values should then satisfy

〈O(x + iy, θ)〉η =

∫

dxdy

2π
ρ(x, y, θ)O(x + iy). (3.47)

In contrast to the complex distribution P (x, θ), the distribution ρ(x, y, θ) is real and has

the interpretation as a probability distribution in the x − y plane. The real and complex

Fokker-Planck operators can be related, using

∂

∂θ
〈O(x + iy, θ)〉 =

∫

dxdy

2π
O(x + iy)LFPρ(x, y, θ)

=

∫

dxdy

2π
O(x + iy)Lc

FPρ(x, y, θ). (3.48)

Here partial integration for finite θ is used as well as the analytic dependence of O on

z = x + iy. Eq. (3.48) suggests a relation between the spectrum of the complex and the

real Fokker-Planck operator. However, we have not yet been able to show that a stationary

solution of the real Fokker-Planck equation exists. We hope to come back to this issue in

the future.

4. One link SU(3) model

4.1 Model

In this section we consider a one link model where the link U is an element of SU(3). The

partition function reads

Z =

∫

dU e−SB detM, (4.1)

with the bosonic part of the action4

SB = −β

6

(

Tr U + Tr U−1
)

. (4.2)

For the fermion matrix we take

M = 1 + κ
(

eµσ+U + e−µσ−U−1
)

, (4.3)

with σ± = 1
2(11 ± σ3). We use the Pauli matrix σ3 rather than γ matrices to avoid factors

of 2. The determinant has the product form

det M = det (1 + κeµU) det
(

1 + κe−µU−1
)

, (4.4)

where the remaining determinants on the right-hand side are in colour space. In order to

exponentiate the determinant, we use the identity, valid for U ∈ SL(3, C),

det (1 + cU) = 1 + cTr U + c2Tr U−1 + c3. (4.5)

4Note that for an SU(3) matrix, U−1 = U†. Nevertheless, we write U−1 to allow for a straightforward

complexification of the Langevin dynamics.
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We find therefore that

det M = e−SF , SF = − lnM(q) − lnM(q̄), (4.6)

with the quark and anti-quark contributions

M(q) = 1 + 3κeµP + 3κ2e2µP−1 + κ3e3µ, (4.7)

M(q̄) = 1 + 3κe−µP−1 + 3κ2e−2µP + κ3e−3µ. (4.8)

Here we introduced the Polyakov loop P and its “conjugate” P−1,

P =
1

3
Tr U, P−1 =

1

3
Tr U−1. (4.9)

Note that PP−1 6= 1. At large µ, the anti-quark contribution M(q̄) → 1 and no longer

contributes. However, the term is crucial to preserve the symmetry (2.6) and is in particular

relevant at imaginary and small real µ.

Observables are defined as

〈O(U)〉 =
1

Z

∫

dU e−SB(U) detM(U)O(U). (4.10)

The observables we consider are the Polyakov loop P , the conjugate Polyakov loop P−1

and the density n. The latter is determined by

〈n〉 =
∂ ln Z

∂µ
, (4.11)

and reads

n =
∂ lnM(q)

∂µ
+

∂ lnM(q̄)

∂µ

= 3
κeµP + 2κ2e2µP−1 + κ3e3µ

M(q)
− 3

κe−µP−1 + 2κ2e−2µP + κ3e−3µ

M(q̄)
. (4.12)

At zero chemical potential, the density vanishes while at large µ the density n → 3, the

maximal numbers of (spinless) quarks on the site.

In this model, expectation values can be obtained directly by numerical integration,

allowing for a comparison with the results from stochastic quantization presented below.

Since we only consider observables that depend on the conjugacy class of U , we only have to

integrate over the conjugacy classes. These are parametrized by two angles −π < φ1, φ2 ≤
π. The reduced Haar measure on the conjugacy classes [U ] reads

d[U ] =
1

N sin2

[

1

2
(φ1 − φ2)

]

sin2

[

1

2
(φ1 + 2φ2)

]

sin2

[

1

2
(φ2 + 2φ1)

]

, (4.13)

where N is a normalization constant. The matrix is parametrized as

U = diag
(

eiφ1 , eiφ2 , e−i(φ1+φ2)
)

, (4.14)
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such that

SB = −β

3
[cos(φ1) + cos(φ2) + cos(φ1 + φ2)] , (4.15)

and

P =
1

3

[

eiφ1 + eiφ2 + e−i(φ1+φ2)
]

, P−1 =
1

3

[

e−iφ1 + e−iφ2 + ei(φ1+φ2)
]

. (4.16)

It is now straightforward to compute expectation values by numerical integration over φ1

and φ2.

4.2 Complex Langevin dynamics

In contrast to in the U(1) model, the Langevin dynamics is now defined in terms of matrix

multiplication. We denote U(θ + ǫ) = U ′ and U(θ) = U , where θ is again the Langevin

time and consider the Langevin process,

U ′ = R U, R = exp
[

iλa

(

ǫKa +
√

ǫηa

)]

. (4.17)

Here λa (a = 1, . . . , 8) are the traceless, hermitian Gell-Mann matrices, normalized as

Tr λaλb = 2δab. The noise satisfies

〈ηa〉 = 0, 〈ηaηb〉 = 2δab, (4.18)

and the drift term reads

Ka = −DaSeff , Seff = SB + SF . (4.19)

Differentiation is defined as

Daf(U) =
∂

∂α
f

(

eiαλaU
) ∣

∣

∣

α=0
. (4.20)

In particular, DaU = iλaU and DaU
−1 = −iU−1λa.

The explicit expressions for the drift terms are

Ka = KB
a + KF

a , (4.21)

with

KB
a = −DaSB(U) =

β

2

(

DaP + DaP
−1

)

, (4.22)

KF
a = −DaSF (U) = 3

κeµDaP + κ2e2µDaP
−1

M(q)
+ 3

κe−µDaP
−1 + κ2e−2µDaP

M(q̄)
,

(4.23)

written in terms of

DaP =
i

3
Tr λaU, DaP

−1 = − i

3
Tr U−1λa. (4.24)

Let us first consider the case without chemical potential and take U ∈ SU(3). Then it is easy

to see that K†
a = Ka and therefore R†R = 11. Moreover, since the Gell-man matrices are
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Figure 9: Real part of the Polyakov loop 〈P 〉 (left) and the conjugate Polyakov loop 〈P−1〉 (right)

as a function of µ for three values of β at fixed κ = 1/2.

traceless, detR = 1. Therefore, if U is an element of SU(3), it will remain in SU(3) during

the Langevin process. The same results are found at finite imaginary chemical potential

µ = iµI . At nonzero real µ on the other hand, we find that R†R 6= 11, although det R = 1

still holds. Therefore U will be an element of SL(3, C) during the Langevin evolution. If U is

parametrized as U = exp (iλaAa/2), this implies that the gauge potentials Aa are complex.

We solved the Langevin process (4.17) numerically. The matrix R is computed

by exponentiating the complex traceless matrix iλa (ǫKa +
√

ǫηa), employing Cardano’s

method [37] for finding the eigenvalues. In figure 9 the real part of the Polyakov loop 〈P 〉
and the conjugate Polyakov loop 〈P−1〉 are shown as a function of µ for three values of β at

fixed κ = 1/2. The lines are the ‘exact’ results obtained by numerically integrating over the

angles φ1 and φ2, as discussed above. The symbols are obtained with complex Langevin

dynamics, using the same Langevin stepsize and number of time steps as in the U(1) model

(ǫ = 5 × 10−5 and 5 × 107 time steps). Errors are estimated with the jackknife procedure.

Again, the imaginary part is zero analytically and consistent with zero within the error in

the Langevin dynamics. Excellent agreement between the exact and the stochastic results

can be seen.

Scatter plots of the Polyakov loop during the Langevin evolution are shown in figure 10

for four values of µ at β = 1 and κ = 1/2. Every point is separated from the previous

one by 500 time steps. Note that the distribution is approximately symmetric under

reflection Im P → −Im P , ensuring that Im 〈P 〉 = 0 within the error. We observe that the

characteristic shape visible at µ = 0 becomes more and more fuzzy at larger µ, but the

average remains well defined for all values of µ. The density is shown in figure 11 (left),

with again good agreement between the exact and the stochastic results. We observe

that saturation effects set in for smaller values of µ compared to the U(1) model, e.g.

n = nmax/2 = 3/2 already at µ ≈ 1.

During the complex Langevin evolution the matrix U ∈ SL(3, C). In order to quantify

how much it deviates from SU(3), we may follow the evolution of

f(U) =
1

3
Tr U †U. (4.25)
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Figure 10: Scatter plot of the Polyakov loop for β = 1, κ = 1/2 and µ = 0, 1, 2, 3.
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Figure 11: Left: real part of the density 〈n〉. Right: deviation from SU(3) during complex

Langevin evolution: Tr U †U/3 as a function of Langevin step, for µ = 1, 2, 3, 4 at β = 1, κ = 1/2.

It is easy to show that f(U) ≥ 1, with the equality in the case that U ∈ SU(3).5 It provides

therefore a good measure to quantify the deviation from SU(3). In figure 11 (right), we

show this quantity during the Langevin evolution. We observe that the deviations from 1

are present but not too large. If U is parametrized as U = exp (iλaAa/2), this implies the

imaginary parts of the gauge potentials Aa do not become unbounded.

5Consider U ∈ SL(N, C) and f(U) = Tr U†U/N . Using a polar decomposition, U = V P , with V ∈

SU(N) and P a positive semidefinite hermitian matrix with detP = 1, it is easy to show that f(U) ≥ 1,

with the equal sign holding when U ∈ SU(N).
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Figure 12: Left: real part of 〈e2iφ〉 = 〈det M(µ)/ detM(−µ)〉. Right: real part of

〈det M(−µ)/ detM(µ)〉.

4.3 Phase of the determinant

As in the U(1) model, we study the phase of the determinant in the form

〈e2iφ〉 =

〈

det M(µ)

det M(−µ)

〉

. (4.26)

At zero chemical potential, the ratio is 1. Due to the SU(3) structure, however, the

behaviour at large µ is qualitatively different. We find

lim
µ→∞

det M(µ) = κ3e3µ
[

1 + 3e−µ
(

κ + κ−1
)

P−1 + O(e−2µ)
]

, (4.27)

lim
µ→∞

detM(−µ) = κ3e3µ
[

1 + 3e−µ
(

κ + κ−1
)

P + O(e−2µ)
]

, (4.28)

such that

lim
µ→∞

detM(µ)

det M(−µ)
= 1 + 3e−µ

(

κ + κ−1
) (

P−1 − P
)

+ O(e−2µ). (4.29)

As a result the average phase goes to 1 at large µ and not towards 0 as in the U(1) model.6

Therefore we expect the sign problem to become exponentially small in the saturation

regime at large µ.

We have computed the average phase factor and the results are shown in figure 12 (left).

The lines are again the ‘exact’ results. As is clear from this plot, the sign problem is quite

mild for all values of µ, since the maximal deviation from 1 is less than 15%. In figure 12

(right) the ratio 〈det M(−µ)/det M(µ)〉 = Z(−µ)/Z(µ) is shown. Here we observe a

small but systematic deviation from 1, more pronounced at smaller β and intermediate

µ. However, we found that the deviation from 1 is reduced when continuing the Langevin

evolution to larger and larger times. As in the U(1) model, this observable is the most

sensitive and slowest converging quantity.

Scatter plots of the phase are presented in figure 13. At small chemical potential

(top figure), there appears to be a similar structure as in the U(1) model, although not

as pronounced. In the intermediate region (middle), the distribution is wider. At large µ

(bottom), the distribution becomes narrow again, centered around (1, 0).

6This difference can be traced back to eq. (4.5).
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Figure 13: Scatter plot of e2iφ = detM(µ)/ detM(−µ) during the Langevin evolution, for β = 1,

κ = 1/2 and 0.25 ≤ µ ≤ 4.

5. QCD at finite chemical potential

5.1 Hopping expansion

In this section we leave the one link models behind and consider QCD at chemical potential.
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The SU(3) gauge field contribution to the euclidean lattice action is7

SB [U ] = −β
∑

x

∑

µ,ν
µ<ν

(

1

6

[

Tr Ux,µν + Tr U−1
x,µν

]

− 1

)

, (5.1)

with β = 6/g2. The plaquettes are defined as

Ux,µν = Ux,µUx+µ̂,νU
−1
x+ν̂,µU−1

x,ν , (5.2)

and

U−1
x,µν = Ux,νµ. (5.3)

The fermion matrix M for Wilson fermions was already given in eq. (2.7). The γ matrices

satisfy γ†
µ = γµ and γ2

µ = 11. We use periodic boundary conditions in space and antiperiodic

boundary conditions in the euclidean time direction; the temperature and the number of

time slices Nτ are related as T = 1/Nτ (the lattice spacing a ≡ 1). The fermion matrix

obeys

M †(µ) = γ5M(−µ)γ5, (5.4)

such that the determinant obeys eq. (2.6).

We consider the heavy quark limit, where all spatial hopping terms are ignored and

only the temporal links in the fermion determinant are preserved. We write therefore

detM ≈ det
[

1 − κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)]

= det (1 − 2κeµUx,4T4)
2 det

(

1 − 2κe−µU−1
x,4T−4

)2

=
∏

x

det
(

1 + heµ/TPx

)2
det

(

1 + he−µ/TP−1
x

)2
, (5.5)

where we defined h = (2κ)Nτ and the (conjugate) Polyakov loops are

Px =
Nτ−1
∏

τ=0

U(τ,x),4, P−1
x

=
0

∏

τ=Nτ−1

U−1
(τ,x),4. (5.6)

In the final line of eq. (5.5) the determinant refers to colour space only. The + sign appears

because of the antiperiodic boundary conditions.

This approximation is motivated by the Heavy Dense Model considered e.g. in refs. [30 –

36], in which the limit

κ → 0, µ → ∞, κeµ fixed, (5.7)

was taken. However, here also the backward propagating quark, with the inverse Polyakov

loop, is kept in order to preserve the relation (2.6).

Using eq. (4.5), the determinant can now be written as

detM = e−SF , SF = −
∑

x

(

2 lnM(q)
x + 2 lnM(q̄)

x

)

, (5.8)

7We write U−1 rather than U†; see footnote 4.
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with the quark and anti-quark contributions

M(q)
x = 1 + 3heµ/T Px + 3h2e2µ/T P−1

x
+ h3e3µ/T , (5.9)

M(q̄)
x = 1 + 3he−µ/T P−1

x
+ 3h2e−2µ/T Px + h3e−3µ/T , (5.10)

where

Px =
1

3
TrPx, P−1

x
=

1

3
TrP−1

x
. (5.11)

The density is given by

〈N〉 =
∑

x

〈nx〉 = T
∂ ln Z

∂µ
, (5.12)

and we find

nx = 2T
∂ lnM(q)

x

∂µ
+ 2T

∂ lnM(q̄)
x

∂µ

= 6
heµ/T Px + 2h2e2µ/T P−1

x
+ h3e3µ/T

M(q)
x

−6
he−µ/T P−1

x
+ 2h2e−2µ/T Px + h3e−3µ/T

M(q̄)
x

. (5.13)

At zero chemical potential, the density vanishes while at large µ the density nx → 6, the

maximal numbers of quarks on a site.

5.2 Complex Langevin dynamics

The implementation of the Langevin dynamics follows closely the one discussed in the

previous section on the SU(3) one link model. We denote Ux,µ(θ + ǫ) = U ′
x,µ and Ux,µ(θ) =

Ux,µ, and consider the process

U ′
x,µ = Rx,µ Ux,µ, Rx,µ = exp

[

iλa

(

ǫKxµa +
√

ǫηxµa

)]

, (5.14)

with the noise satisfying

〈ηxµa〉 = 0, 〈ηxµaηyνb〉 = 2δµνδabδxy. (5.15)

The drift term is

Kxµa = −DxµaS[U ]. (5.16)

Differentiation is defined as

Dxµaf(U) =
∂

∂α
f

(

eiαλaUx,µ

) ∣

∣

∣

α=0
. (5.17)

The drift term is written as

Kxµa = KB
xµa + KF

xµa, (5.18)

with the bosonic contribution

KB
xµa = −DxµaSB[U ]

= i
β

6

∑

ν 6=µ

Tr
[

λaUxµCx,µν − Cx,µνU
−1
xµ λa

]

, (5.19)
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Figure 14: Real part of the Polyakov loop 〈P 〉 and the conjugate Polyakov loop 〈P−1〉 (left) and

the density 〈n〉 (right) as a function of µ at β = 5.6, κ = 0.12 on a 44 lattice, with Nf = 3 flavours.

where

Cx,µν = Ux+µ̂,νU
−1
x+ν̂,µU−1

x,ν + U−1
x+µ̂−ν̂,νU

−1
x−ν̂,µUx−ν̂,ν , (5.20)

Cx,µν = Ux,νUx+ν̂,µU−1
x+µ̂,ν + U−1

x−ν̂,νUx−ν̂,µUx+µ̂−ν̂,ν. (5.21)

The fermionic contribution is

KF
xµa = −DxµaSF [U ] = δµ4K

F
xa, (5.22)

with

KF
xa = 6

heµ/T DxaPx + h2e2µ/T DxaP
−1
x

M(q)
x

+ 6
he−µ/T DxaP

−1
x

+ h2e−2µ/T DxaPx

M(q̄)
x

. (5.23)

The derivatives are

DxaPx = D(τx)aPx =
i

3
Tr

τ−1
∏

τ ′=0

U(τ ′
x)4λa

Nτ−1
∏

τ ′′=τ

U(τ ′′
x)4, (5.24)

DxaP
−1
x

= D(τx)aP
−1
x

= − i

3
Tr

τ
∏

τ ′=Nτ−1

U−1
(τ ′

x)4λa

0
∏

τ ′′=τ−1

U−1
(τ ′′

x)4. (5.25)

We have solved eq. (5.14) numerically. A detailed analysis is postponed to a future

publication; here we present some results for illustration purposes. We have used the

temporal gauge, where only the last link differs from the identity,

U(Nτ−1,x)4 = Vx, U(τ,x)4 = 11 (τ 6= Nτ − 1). (5.26)

To simplify the exponentiation we use the following updating factor in eq. (5.14),

R̃x,µ =
∏

a=Perm(1,..,8)

eiλa(ǫKxµa+
√

ǫηxµa), (5.27)

with random ordering from sweep to sweep and where Kxµa is complex. R and R̃ only

differ by terms of order ǫ2, which is the general systematic error of the Langevin algorithm.
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For the results shown here, we have employed Langevin stepsize ǫ = 2 × 10−5 and 50000

iterations of 50 sweeps each, using ergodicity to calculate averages. Runaway trajectories

have practically been eliminated by monitoring the drift and using adaptive step size. The

lattice has size 44, with β = 5.6, κ = 0.12. We have studied chemical potentials in the

range 0.5 ≤ µ ≤ 0.9, using Nf = 3 fermion flavours.

In figure 14 we present the real part

0 10000 20000 30000 40000 50000

Langevin iteration

0

5

10

1/
3 

T
r 

U
4✝

U
4

µ=0.5
µ=0.9

Figure 15: Deviation from SU(3): TrU †
4
U4/3 dur-

ing the Langevin evolution, for µ = 0.5 and 0.9.

of the Polyakov loop and the conju-

gate Polyakov loop (left) and the den-

sity (right). These results appear consis-

tent with those obtained in ref. [36] us-

ing reweighting techniques, although at

this level of the study both statistics and

thermalization are not yet optimal. Nev-

ertheless we clearly see that at µ = 0.5

the system is in the low-density “confin-

ing” phase whereas for larger µ the den-

sity increases rapidly and both the direct

and the conjugate Polyakov loops become

nonzero, indicating “deconfinement”.

The deviation from SU(3) during the complex Langevin evolution is shown in figure 15,

using Tr U †
4U4/3 as the observable. After the initial thermalization stage, this quantity

fluctuates around 3.5 > 1. The fluctuations are similar for all values of the chemical

potential we considered. Using spatial links Ui rather than U4 gives a similar result.

5.3 Phase of the determinant

We study the phase of the determinant as before. Scatter plots during the Langevin

evolution are shown in figure 16, for µ = 0.5, 0.6, 0.7, and 0.8. At the smallest value of µ,

the average phase factor is close to one; for the real part we find 0.91 ± 0.28, while the

imaginary part is consistent with zero (0.009 ± 0.39). At the larger values shown here, the

distribution immediately becomes very wide and the average phase factor is consistent with

zero (but with a large error). Note that the scale is very different compared to the one link

model. Such an (apparently) abrupt change in the average phase factor when moving from

a low-density to a high-density phase is somewhat reminiscent of what is found in random

matrix studies, see e.g. refs. [38 – 40].

At large chemical potential the average phase factor approaches 1 again. This follows

from the behaviour of the determinant,

lim
µ→∞

detM(µ) =
∏

x

h3e3µ/T
[

1 + 3e−µ/T
(

h + h−1
)

P−1
x

+ O(e−2µ/T )
]

, (5.28)

lim
µ→∞

det M(−µ) =
∏

x

h3e3µ/T
[

1 + 3e−µ/T
(

h + h−1
)

Px + O(e−2µ/T )
]

, (5.29)
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Figure 16: Scatter plot of e2iφ = detM(µ)/ detM(−µ) during the Langevin evolution for various

values of µ at β = 5.6, κ = 0.12 on a 44 lattice.

such that

lim
µ→∞

detM(µ)

det M(−µ)
= 1 + 3e−µ/T

(

h + h−1
)

∏

x

(

P−1
x

− Px

)

+ O(e−2µ/T ). (5.30)

However, the values of the chemical potential we consider are not in that saturation region.

6. Summary and outlook

We have considered stochastic quantization for theories with a complex action due to fi-

nite chemical potential, and applied complex Langevin dynamics to U(1) and SU(3) one

link models and QCD in the hopping expansion. In the latter, the full gauge dynamics is

preserved but the fermion determinant is approximated. In all cases the complex determi-

nant satisfies detM(µ) = [detM(−µ)]∗, as is the case in QCD. We studied the (conjugate)

Polyakov loops, the density and the phase of the determinant. In the one link models

excellent agreement between the numerical and exact results was obtained, for all values

of µ ranging from zero to saturation.

In the one link models the phase of the determinant was studied in detail. Even when

the phase factor varies significantly during the Langevin evolution, its distribution is well-

defined and expectation values can be evaluated without problems. The sign problem does

not appear to be an obstruction here. In QCD in the hopping expansion, first results

indicate that the behaviour of the average phase factor changes abruptly when moving

from the low-density to a high-density phase. Nevertheless, other observables (Polyakov

loop, density) are still under control, even at larger chemical potential.

In the case of the U(1) model, we found strong hints why the sign problem does not

appear to affect this method. We found that important features of classical flow and

classical fixed points are largely independent of the chemical potential. The presence of
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µ changes the complex Langevin dynamics only quantitatively but not qualitatively, even

when the average phase factor of the determinant becomes very small. Moreover, a study

of the complex Fokker-Planck equation shows that all nonzero eigenvalues are real and

positive, also in the presence of a nonzero chemical potential. An open question concerns

the relationship between the stationary solution of the complex Fokker-Planck operator

and its real counterpart. The structure in the U(1) model responsible for these results is

related to symmetry properties of the action and the determinant. Therefore, it may be

envisaged that they carry over to the more complicated cases.

There are many directions into which this work can be extended. In the U(1) model,

considerable insight could be obtained (semi-)analytically. It will be interesting to extend

this analysis to more complicated theories. It will also be useful to perform further tests

of the method in other simple models sharing relevant features with QCD at finite µ.

Concerning QCD in the hopping expansion, for which we presented first results here, a

more systematic study stays ahead. One way to test the approach is to also perform (real)

Langevin dynamics at imaginary chemical potential, which goes smoothly and without

runaway and convergence problems, and perform an analytical continuation. Finally, it

will be interesting to apply this method to QCD both at large density as well as in the

region of small chemical potential around the crossover temperature. Here it may shed

light on the (non)existence of the critical point, in a setup which is manifestly independent

from the other approaches available in this region. It should be noted that the Langevin

method only requires the derivative of the determinant, and not the determinant itself.
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A. Fokker-Planck equation in Minkowski time

In refs. [26 – 28] stochastic quantization was applied to nonequilibrium quantum dynamics

in real time. For completeness, we give here the analysis of the corresponding complex

Fokker-Planck equation for the one link U(1) model.8

8This appendix is partly based on ref. [41].
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Consider the following partition function in Minkowski time,

Zp =

∫ π

−π

dx

2π
eiSp , Sp = β cos x + px. (A.1)

The term px, with p integer, is a reweighting term, used to stabilize the Langevin dynamics

(see also ref. [28]). The Fokker-Planck equation for the (complex) distribution Pp reads

∂

∂θ
Pp(x, θ) =

∂

∂x

(

ν
∂

∂x
− i

∂Sp

∂x

)

Pp(x, θ)

= νP ′′
p (x, θ) + i [β sin(x) − p]P ′

p(x, θ) + iβ cos(x)Pp(x, θ). (A.2)

Here ν is essentially the normalization of the noise: for ν = 1 we have the full quantum

case, for ν = 0 we obtain the classical evolution (which is equivalent to taking β and p to

∞).

To continue we discretize x as xl = 2πl/N , with −(N − 1)/2 ≤ l ≤ N/2, and define

the modes as

P̃p(n, θ) =
1

N

N/2
∑

l=−(N−1)/2

einxlPp(xl, θ), (A.3)

Pp(xl, θ) =

N/2
∑

n=−(N−1)/2

e−inxlP̃p(n, θ). (A.4)

The Fokker-Planck equation for the modes P̃p(n, θ) then reads

∂

∂θ
P̃p(n, θ) = −

[

ν
N2

π2
sin2(kn/2) + p

N

2π
sin(kn)

]

P̃p(n, θ)

+i
β

2

N

2π

[

sin(kn+1)P̃p(n + 1, θ) − sin(kn−1)P̃p(n − 1, θ)
]

−i
β

2

[

P̃p(n + 1, θ) − P̃p(n − 1, θ)
]

, (A.5)

where kn = 2πn/N . For small n/N this reduces to

∂

∂θ
P̃p(n, θ) = −(νn2 + pn)P̃p(n, θ) +

n

2
iβ

[

P̃p(n + 1, θ) − P̃p(n − 1, θ)
]

, (A.6)

which can be obtained directly from the continuum Fokker-Planck equation before discretiz-

ing x. Extension to general (complex) β = βR + iβI and p = pR + ipI is straightforward.

In the following no explicit ν means ν = 1.

From averages with the distribution P we obtain

〈eiqx〉p =

∫ π
−π dx eiqxPp(x, θ)
∫ π
−π dxPp(x, θ)

=
P̃p(q, θ)

P̃p(0, θ)
, (A.7)

〈eiqx〉0 =

∫ π
−π dx eiqxP0(x, θ)
∫ π
−π dxP0(x, θ)

=

∫ π
−π dx ei(q−p)xPp(x, θ)
∫ π
−π dx e−ipxPp(x, θ)

=
P̃p(q − p, θ)

P̃p(−p, θ)
. (A.8)
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Figure 17: Complex Fokker-Planck equation for Minkowski dynamics. Left: langevin time de-

pendence of the modes P̃0(n, θ) for various values of n, with β = 1, p = 0. Right: smallest

nonzero eigenvalue of the complex Fokker-Planck equation as a function of β for various values of

the reweighting parameter p.

Notice that p and q (both integers) are interchangeable. This implies that simulations can

be performed at p = 0, while eqs. (A.7)–(A.8) can be used to obtain Pp for any p.

Similar to the procedure of section 3.4, we have solved the complex Fokker-Planck

equation numerically for the modes P̃p(n, θ). In contrast to the finite µ case, these modes

are now complex in general. For example, for even (odd) p even (odd) modes are real

and odd (even) modes are imaginary, in agreement with the symmetries of the action. We

further find that for p > 0 the solution for positive modes converges correctly, but negative

modes diverge, and vice versa. The numerical solution for p = 0 converges quickly to the

values determined by eiS0 , when 0 ≤ β . 2.3.9 In figure 17 (left) we show the Langevin

time dependence of some modes when β = 1, p = 0. Using the asymptotic values for the

modes and eqs. (A.7)–(A.8), we can reconstruct Pp(x), which agrees nicely with eiSp(x).

The Langevin simulation itself also yields good results for the expectation values when

p 6= 0 or at p = 0, provided reweighting from p 6= 0 is used. For a more thorough discussion

of the conditions for convergence of the Langevin simulation, see ref. [28].

Again further insight can be obtained from the eigenvalues, determined by the eigen-

value equation

n(n + p)P̃p(n) +
n

2
iβ

[

P̃p(n + 1) − P̃p(n − 1)
]

= λP̃p(n). (A.9)

If λ 6= 0, Pp(0) vanishes and the sequences for n > 0 and n < 0 split again in two. Positive

and negative n are related by changing the sign of p. In figure 17 we show the smallest

nonzero eigenvalue for the positive n sequence for five values of p. In contrast to the finite

µ case, we find that eigenvalues may be negative, depending on the value of p and β,

indicating the possibility of problems with convergence and stability. This corroborates

the above observations.

9Notice that the partition function Z0 has a zero at β near 2.4.
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Finally, one may also study the real Fokker-Planck equation to obtain the true prob-

ability distribution ρp(x, y, θ) and its modes. For an analytic function O(z) we have

∫

dxdy

2π
ρp(x, y, θ)O(x + iy) =

∫

dx

2π
Pp(x, θ)O(x), (A.10)

hence, in particular,

∫

dxdy

2π
ρp(x, y, θ)einx−ny =

∫

dy e−nyρ̃p(n, y, θ) =

∫

dx

2π
Pp(x, θ)einx = P̃p(n, θ). (A.11)

The expectation values with ρp should represent the averages over the Langevin process

itself. Even when the latter converge to the correct values, the real Fokker-Planck equation

does not show good behaviour, however. We thus have the situation that we find agreement

between the complex Fokker-Planck equation (with the corresponding complex distribution

P ) and the actual Langevin process, while the true probability distribution ρp, which

formally mediates between the former two, appears more difficult to control.
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